Granice ciągów 2 Obliczanie granic 3-4 Szereg geometryczny 3 • wzory na obliczanie procentu prostego i procentu składanego (P) • pojęcia: procent
wzór na n-ty wyraz i na sumę n początkowych wyrazów ciągu arytmetycznego; ciągi geometryczne; wzór na n-ty wyraz i na sumę n początkowych wyrazów ciągu geometrycznego; własności ciągów; granice ciągów – granice sumy, różnicy, iloczynu i ilorazu, twierdzenie o trzech ciągach; szereg geometryczny i jego suma . 7. Trygonometria:
Lekcja 4: Konstruowanie ciągów geometrycznych. Jawne i rekurencyjne wzory na ciąg geometryczny. Wzory rekurencyjne dla ciągów geometrycznych. Wzory jawne ciągów geometrycznych. Zamiana rekurencyjnej i jawnej postaci wzoru ciągu geometrycznego. Zamiana rekurencyjnej i jawnej postaci wzoru ciągu geometrycznego. Ciągi geometryczne
Niech S n oznacza ciąg sum początkowych wyrazów ciągu ( a n), to znaczy ciąg określony wzorem S n = a 1 + a 2 + … + a n dla n ≥ 1. Jeżeli | q | < 1, to ciąg ( S n) ma granicę. Tę granicę nazywamy sumą wszystkich wyrazów ciągu ( a n). 📚 Zanurz się w świecie granic ciągów z naszymi wzorami maturalnymi. Idealne 🌟 dla
Klasówka 2 Wzory skróconego mnożenia: kwadrat sumy i różnicy, różnica kwadratów. (R)Sześcian sumy i różnicy, suma i różnica sześcianów. (SPP)Wzór na aⁿ-1, n∈N. >. Zobacz najważniejsze wzory skróconego mnożenia. Kwadrat sumy i różnicy, różnica kwadratów, kwadrat sumy trzech wyrażeń, sześcian sumy i różnicy
11.18 Test Stosunek pól wielokątów podobnych. Cały materiał. Klasówka 11.18. Test 11.18. Zacznij rozwiązywać test!! Aby wyświetlić prawidłowe rozwiązania i wynik Twojego testu, wyślij SMS o treści AP.TFU4 na nr 73068. Otrzymasz dostęp do wszystkich klasówek i testów, oraz płatnych artykułów przez dwie godziny ( 120min )!
. Przykłady granic, których wynik jest oczywisty. Granica ciągu przy n rozbieżnym do nieskończoności. Granica ciągu. Potęga. Wartość bezwzględna.
Wzór na dla \( n-ty \) wyraz ciągu geometrycznego dla \( \left(a_{n} \right) \) o pierwszym wyrazie \( a_{1} \) i ilorazie \( q \): \[ a_{n}=a_{1}*q^{n-1} \] dla \( n\geq 2 \) Wzór na sumę \( S_{n}=a_{1}+a_{2}+…+a_{n} \) początkowych \( n \) wyrazów ciągu geometrycznego: \[ S_{n}=a_{1}*\frac{1-q^{n}}{1-q} \] dla \( q\neq 0 \) \[ S_{n}=n*a_{1} \] dla \(q=0 \) Między sąsiednimi wyrazami ciągu geometrycznego zachodzi związek: \[ a_{n}^{2}=a_{n-1}*a_{n+1} \] Procent składany Jeżeli kapitał początkowy \(K \) złożymy na \( n \) lat w banku, w którym oprocentowanie lokat wynosi \( p% \) w skali rocznej i kapitalizacja odsetek następuje po upływie każdego roku trwania lokaty, to kapitał końcowy \( K_{n} \) wyraża się wzorem: \[ K_{n}=K*\left(1+\frac{p}{100} \right)^{n} \]
Marysia17 Użytkownik Posty: 3 Rejestracja: 2 paź 2006, o 22:04 Płeć: Kobieta Lokalizacja: Gdynia wzór na sumę ciągu Sprawa jest trochę zawiła, jak dla średnio mądrej licealistki. A mianowicie problem tkwi: 1. W znalezieniu wzoru sumy ciągu u(n)=n(n+1) i wykorzystaniu tego wzoru do znalezienia sumy ciągu u(n)=n^2. 2. analogicznie do ad. 1- suma ciągu u(n)=n(n+1)(n+2) i znalezienie sumy ciągu u(n)=n^3 3. analogicznie do suma ciągu u(n)=n(n+1)(n+2)(n+3) i znalezieniu sumy ciągu u(n)=n^4 4. Wykorzystaniu powyzszego do ustalenia wzoru na sume ciągu u(n)=n^k Dziękuję za wszelką pomoc. Marysia17 Użytkownik Posty: 3 Rejestracja: 2 paź 2006, o 22:04 Płeć: Kobieta Lokalizacja: Gdynia wzór na sumę ciągu Post autor: Marysia17 » 3 paź 2006, o 16:26 Zależy mi najbardziej na podpunkcie 4. Ostatnio zmieniony 5 paź 2006, o 01:37 przez Marysia17, łącznie zmieniany 1 raz. mol_ksiazkowy Użytkownik Posty: 8514 Rejestracja: 9 maja 2006, o 12:35 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2754 razy Pomógł: 703 razy wzór na sumę ciągu Post autor: mol_ksiazkowy » 3 paź 2006, o 16:46 \(\displaystyle{ \Bigsum_{k=1}^n k(k+1)(k+2)...(k+r)=\frac{1}{r+2}n(n+1)(n+2)....(n+r)(n+r+1)}\) Marysia17 Użytkownik Posty: 3 Rejestracja: 2 paź 2006, o 22:04 Płeć: Kobieta Lokalizacja: Gdynia wzór na sumę ciągu Post autor: Marysia17 » 3 paź 2006, o 17:12 A wzór na sumę ciągu u(n)=1^k+2^k+3^k...n^k z jakimś wyjaśnieniem jest możliwy do stworzenia? mol_ksiazkowy Użytkownik Posty: 8514 Rejestracja: 9 maja 2006, o 12:35 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2754 razy Pomógł: 703 razy wzór na sumę ciągu Post autor: mol_ksiazkowy » 3 paź 2006, o 19:15 Marysia17 napisała: A wzór na sumę ciągu u(n)=1^k+2^k+3^k...n^k z jakimś wyjaśnieniem jest możliwy do stworzenia?Ależ tak!! ogólnie co widać łatwo u(n) jest wielomianem zmiennej n stopnia k+1....ale istnieje także możliwość takiego zapisu: \(\displaystyle{ u(n)=1^k+2^k+3^k+....+n^k= \bigsum_{i=1}^{k} a_{i,k} {n+i\choose k+1}}\) gdzie wspolczynniki sa mozliwe do odczytania z tablicy: \(\displaystyle{ a_{i,k}}\), to i-ty element k tego wiersza .........................1....................... ...................1..........1................. ............1...........4..........1........... .......1.........11.........11.........1..... ..1........26.........66........26.........1 ................................................. wg reguły: Każdy element wewnatrz tabilcy jest sumą jego dwóch górnych sąsiadów pomnożonych odpowiedznio przez numer lewego (prawego ) skosu, w którym się on znajduje, np. 26= 4*1+ 2*11, bo 2 jest w czwartym skosie prawym, a 11 jest w drugim skosie lewym itd. i tak np.: \(\displaystyle{ u(n)=1^4+2^4+3^4+...+n^4= {n+1\choose 5}+11 {n+2\choose 5}+11{n+3\choose 5}+{n+4\choose 5}}\)
wzory na granice ciągów